

1

Expected Number of Hash

Collisions for a given

hash algorithm.

2

Table of Contents
1. Introduction ... 3

2. Background Information ... 3

2.1 Hash Functions... 3

2.2 Hash Collision .. 4

2.3 Other background Knowledge ... 4

3.Generating Hashes... 6

3.1 Choosing Appropriate Hash Function ... 6

3.2 Implementing Pearson Hashing ... 6

3.3 Converting “MATH” to a hash value .. 8

4. Finding Hash Collisions ... 9

4.1 N Constant ... 9

4.2 K Constant ... 14

4.3 Collisions for given Input .. 15

4.4 Expected Number of Collisions ... 17

4.5 E(Collisions) For Common Hashing Algorithms .. 18

4.6 Optimizing E(Collisions) for N and K ... 20

5. Conclusions .. 24

6.References.. 26

7. Appendix .. 27

3

1. Introduction

This exploration intends to find the expected number of collision a given hash function.

An ideal hash function has a variety of properties, one of these properties is that ideal

hash functions have no hash collisions. While this is properties of hash functions, in the real

world even the best cryptographic hash functions have some hash collisions.

As someone very interested in computer science, especially encryption, exploring

encryption in specific hashing algorithms from a more mathematical perspective is very

fascinating to me. Furthermore, I found hash collision specifically to be a counter-initiative

concept which occurs in hash algorithms even though they are designed to prevent it, hence

when I realised I could apply mathematics to calculate the expected number of collisions for any

hash function, I was inevitably excited to proceed with the investigation.

2. Background Information

2.1 Hash Functions

A hash function is a function which can map any given input of any size to an output of a

preset size. This output is called a hash and is usually represented in base16

𝑀𝐷5(𝑡𝑒𝑠𝑡) ∶ 098𝐹6𝐵𝐶𝐷4621𝐷373𝐶𝐴𝐷𝐸4𝐸832627𝐵4𝐹6

 Shown above is an example of a hash using a hash function called MD5, where

“test” is the input and “098F6BCD4621D373CADE4E832627B4F6” is the output.

Ideal hash functions have various features, but the one that is relevant to this exploration

 states, “it is infeasible to find two different inputs with the same hash value”.

4

2.2 Hash Collision

A hash collision is when two input values are mapped

to the same output value.

The image shows a hash collision where the input of

both Michael and Toby are mapped to the output value of 2.

1

While this contradicts the above-stated property of ideal hash functions, hash functions

used in the real world all have some chance of hash collisions however small.

2.3 Other background Knowledge

2.3.1 Modulus Operator

In this exploration, the operator 𝑥(𝑚𝑜𝑑 𝑦)will be used frequently, this operator

represents the remainder after dividing 𝑥 ÷ 𝑦. When 𝑦 > 𝑥, 𝑥(𝑚𝑜𝑑 𝑦) = 𝑥 and When 𝑦 =

𝑥 , 𝑥(𝑚𝑜𝑑 𝑦) = 02

1 "Qlikview Hash Functions And Collisions - The Qlik Fix!". The Qlik Fix!, 2019,

http://www.qlikfix.com/2014/03/11/hash-functions-collisions/.
2 "What Is Modular Arithmetic?". Khan Academy, 2019,

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-
modular-arithmetic.

Figure 1 : Hash Collisions

5

2.3.2 Bits

In this exploration, the term bits and bit size will come up frequently. A bit is what a

binary digit is called, it can take values of only 0 and 1. It is a representation of a number in

base2. 3

Bit size is just the representation of a number of bits used for example 0010 is of size 4

bits.

Another thing to keep in mind it that 8 bits make one byte.

3 "Bits And Bytes". Web.Stanford.Edu, 2019, https://web.stanford.edu/class/cs101/bits-bytes.html.

6

3.Generating Hashes

3.1 Choosing Appropriate Hash Function

To make the process easy to do manually, I have chosen a simple 8-bit hashing function

called Pearson hashing. Using the algorithm, I will be able to conduct a test and try to reach a

general solution for the probabilities of hash collisions in hash functions.

Pearson hashing is a fast and easy algorithm which produces an 8-bit hash. Its implementation

requires only a few instructions, plus a lookup table of 256 values, containing a permutation of

the values 0 through 255. This lookup table is represented by the function 𝐿(𝑥)below

3.2 Implementing Pearson Hashing

Below are functions and sequences which implement Pearson hashing using mathematics and

will produce the required output hash value for any given input hash value.

𝐿𝑒𝑡 𝐼𝑛 𝑏𝑒 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑤ℎ𝑖𝑐ℎ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑒𝑎𝑐ℎ 𝑙𝑒𝑡𝑡𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑢𝑠𝑒𝑟 𝑖𝑛𝑝𝑢𝑡

𝐿𝑒𝑡 𝑧 𝑏𝑒 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐼𝑛

𝐿𝑒𝑡 𝐿(𝑥) 𝑏𝑒 𝑎 ℎ𝑦𝑏𝑟𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑏𝑒𝑙𝑜𝑤 𝑔𝑟𝑎𝑝ℎ 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑍, 0 ≤ 𝑥 ≤ 256

Figure 2 : Self Generated Lookup Table

7

𝐿𝑒𝑡 𝐴(𝑥) be a hybrid function which follows the ASCII Standard 4represented by the table

above.

𝐿𝑒𝑡 𝑂 𝑏𝑒 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑡𝑒𝑟𝑚 𝑂𝑛

𝑂𝑛 = 𝐴(𝐼𝑛), 𝑤ℎ𝑒𝑟𝑒 𝑛: 1 ≤ 𝑛 ≤ 𝑧, 𝑛 ∈ 𝑍

𝐿𝑒𝑡 ℎ𝑛 𝑏𝑒 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑡𝑒𝑟𝑚 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ℎ 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑒𝑙𝑜𝑤

ℎ𝑛+1 = 𝐿((ℎ𝑛 + 𝑂𝑛)(𝑚𝑜𝑑 256)), 𝑤ℎ𝑒𝑟𝑒 𝑛: 1 ≤ 𝑛 ≤ 𝑧, 𝑛 ∈ 𝑍

ℎ1 = 𝑧(𝑚𝑜𝑑 256), This initial term of the recurrence relation shown above.

ℎ𝑧+1𝑤𝑖𝑙𝑙 𝑏𝑒 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑏𝑎𝑠𝑒 10

4 "ASCII Table". Cs.Cmu.Edu, 2019, https://www.cs.cmu.edu/~pattis/15-

1XX/common/handouts/ascii.html.

Figure 3 : ASCII Table

8

3.3 Converting “MATH” to a hash value

Now using the method detailed above for finding a hash value, I will be finding the hash value of

“MATH” using Pearson Hashing

In this case 𝐼𝑛: {′𝑀′, ′𝐴′, ′𝑇′, ′𝐻′}

The sequence 𝐼𝑛has four terms ⇒ 𝑧 = 4

𝑂𝑛 = 𝐴(𝐼𝑛), 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑛 ≤ 4, 𝑎𝑠 𝑧 = 4

From the ASCII Table, we know ‘M’ = 77, ‘A’ = 65, ‘T’ = 84, ‘H’ = 72

⇒ 𝑂𝑛: {77,65,84.72}

ℎ1 = 𝑧(𝑚𝑜𝑑 256) ⇒ ℎ1 = 4(𝑚𝑜𝑑 256) ⇒ ℎ1 = 4

The final hash value for “MATH” is ℎ𝑧+1 ⇒ ℎ5after the solving the below recursion relation

ℎ𝑛+1 = 𝐿((ℎ𝑛 + 𝑂𝑛)(𝑚𝑜𝑑 256)), 𝑤ℎ𝑒𝑟𝑒 𝑛: 1 ≤ 𝑛 ≤ 𝑧, 𝑛 ∈ 𝑍

Solving for ℎ5 = 𝐿((ℎ4 + 𝑂4)(𝑚𝑜𝑑 256)) ⇒ 𝐿((ℎ4 + 72)(𝑚𝑜𝑑 256))

Solving for ℎ4 = 𝐿((ℎ3 + 𝑂3)(𝑚𝑜𝑑 256)) ⇒ ℎ4 = 𝐿((ℎ3 + 84)(𝑚𝑜𝑑 256))

Solving for ℎ3 = 𝐿((ℎ2 + 𝑂2)(𝑚𝑜𝑑 256)) ⇒ ℎ3 = 𝐿((ℎ2 + 65)(𝑚𝑜𝑑 256))

Solving for ℎ2 = 𝐿((ℎ1 + 𝑂1)(𝑚𝑜𝑑 256))

Substituting the value of ℎ1in the above equation

⇒ ℎ2 = 𝐿((4 + 77)(𝑚𝑜𝑑 256)) ⇒ ℎ2 = 𝐿(81) ⇒ ℎ2 = 70

Similarly, the required values are substituted in for the below equations

ℎ3 = 𝐿((ℎ2 + 65)(𝑚𝑜𝑑 256)) ⇒ ℎ3 = 𝐿((70 + 65)(𝑚𝑜𝑑 256)) ⇒ ℎ3 = 𝐿(135) ⇒ ℎ3 = 98

ℎ4 = 𝐿((ℎ3 + 84)(𝑚𝑜𝑑 256)) ⇒ ℎ4 = 𝐿((98 + 84)(𝑚𝑜𝑑 256)) ⇒ ℎ4 = 𝐿(182) ⇒ ℎ4 = 122

ℎ5 = 𝐿((ℎ4 + 72)(𝑚𝑜𝑑 256)) ⇒ ℎ5 = 𝐿((122 + 72)(𝑚𝑜𝑑 256))

⇒ ℎ5 = 𝐿(194) ⇒ ℎ5 = 186

9

The desired value of ℎ5which is the hash value of “MATH” is 186 represented in base10.

4. Finding Hash Collisions

For hash collisions, the two most important variables are 𝑛, 𝑘 where 𝑛 is the number of possible

unique inputs and 𝑘 is the number of possible unique outputs. Using pigeon hole principle, we

know that when 𝑛 > 𝑘 then in at least one output will co-relate to two or more inputs.

As 𝑛, 𝑘 will be rather large number and as this investigation is dealing with only uppercase

letters, the value of 𝑛, 𝑘 can be denoted as 𝑛 = 26𝑙 , 𝑤ℎ𝑒𝑟𝑒 𝑙 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 and

𝑘 = 2𝑏, 𝑤ℎ𝑒𝑟𝑒 𝑏 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠

First, I will be calculating the number of Collisions for any given input represented by function

𝐶(𝐼) where 𝐼 is the given input. This value will be calculated by a program I wrote in python

implementing Pearson hashing. This gave me an opportunity to not only explore a field of math

but to develop my programming skills and learn how to compute and solve complex

mathematically problems using programming.

4.1 N Constant

For the first case, I will keep 𝑛 constant by restricting the character set to only uppercase

letters and choosing a four-letter word, for this test I will be using the word “MATH” for which I

had previously demonstrated the Pearson Hash Value of 186.

[26] × [26] × [26] × [26]

10

The total number of possible combinations of upper case four letters is 264 = 456976, this can

be derived using the multiplicative principle of combinatorics. Four positions are using only four

characters, using only upper-case characters there are 26 possible letters in each position hence

𝑛 = 264

The above described Pearson hash function was an 8-bit function with 𝑏 = 8 𝑎𝑛𝑑 𝑘 = 256

Varying the bit size Pearson hash function to generate outputs for different values of 𝑘

Input Word 𝑙 𝑛 = 26𝑙 𝑏 𝑘 = 2𝑏 Collisions- 𝐶(𝐼)

MATH 4 456976 8 256 1849

MATH 4 456976 9 512 931

MATH 4 456976 10 1024 425

MATH 4 456976 11 2048 220

MATH 4 456976 12 4096 84

MATH 4 456976 13 8192 69

MATH 4 456976 14 16384 22

MATH 4 456976 15 32768 20

The above values of Collisions are for the specific word “MATH” which I choose to run this test,

but it is very likely that with a different four-letter uppercase word the individual value of

Collisions might change. This can have an effect on the accuracy of the conclusions drawn from

this data, but this shouldn’t impede this investigation severely as the key focus is on the

relationship between 𝑘 𝑎𝑛𝑑 𝐶(𝐼) not necessarily the exact values of 𝐶(𝐼).

To further this investigation a clear relationship between 𝑘 𝑎𝑛𝑑 𝐶(𝐼) must be established. From

the looking at a scatterplot of the data above, the data seems to falls a form of quadratic

relationships in the form 𝐶(𝐼) ≅ x𝑘𝑦 .

By taking two random data points from the above eight data points, the above relationship can be

solved as a simultaneous equation with two variables.

11

𝐶(𝐼) = 𝑥𝑘𝑦

→ 220 = 𝑥2048𝑦 and 22 = 𝑥16384𝑦

For the above, the above two equations the values of 𝑥, 𝑦 are 102115, −1.11.

Similarly, this process is repeated for the other six data points with the 𝑥, 𝑦 as the following

𝐶(𝐼) 𝑘 𝐶′(𝐼) 𝑘′ x y

220 2048 22 16384 102115 −1.11

1849 256 69 8192 356351 −0.948801

20 32768 425 1024 191914 -0.881878

931 512 84 4096 126754 -1.15677

From the above values average 𝑥, 𝑦 values can be calculated as 194283.5, −1.022 respectively.

A relationship 𝐶(𝐼) ≅ 194283.5𝑘−1.022 can be established, however, to ensure that this

relationship is an accurate representation of the data the residuals for each point must be

calculated.

The residual at a given point is nothing but the difference between the actual 𝐶(𝐼) value and the

𝐶(𝐼) predicted by the above relationships.

Taking the point 𝐴(84,4096) where 𝐶(𝐼) = 4096 and 𝑘 = 84, hence the residual 𝑟(𝐼) is

𝑅(𝐼) = 4096 − (194283.5(84)−1.022) → 44.49

12

Using the same method to calculate the residual 𝑟(𝐼) for all the data points

𝑘 𝐶(𝐼) 𝑟(𝐼)

256 1849 1177.24

512 931 600.20

1024 425 262.10

2048 220 139.78

4096 84 44.49

8192 69 49.54

16384 22 12.42

32768 20 15.28

Using the residuals for each point, the 𝑅2 score can be calculated which shows how accurate the

relationship is to the actual data set.

𝑅2 = 1 −
∑(𝑟(𝐼))2

∑(𝐶(𝐼) − 𝐶(𝐼)̅̅ ̅̅ ̅̅
5

By substituting the required values then simplifying the 𝑅2 value is 0.3634.

An 𝑅2 value of 0.3634 implies that the relationship is accurate only 36% of the time which is

not a very good relationship. This is likely because the relationship was found by taking random

data points and solving simultaneous equations. This method is constrained in its ability to

accurately describe the relationship. Hence to derive a significant relationship between

𝑘 𝑎𝑛𝑑 𝐶(𝐼) the assistance of technology is needed.

5 "1.5 - The Coefficient Of Determination, R-Squared | STAT 501". Newonlinecourses.Science.Psu.Edu,

2019, https://newonlinecourses.science.psu.edu/stat501/node/255/.

13

Figure 4 : Plotted Relationship between C(I)

and bit size

By using regression software on a scatterplot of the data a more accurate relationship can be

established

𝐶(𝐼) ≅ x𝑘𝑦 , 𝑤ℎ𝑒𝑟𝑒 𝑥 = 456976 and

𝑦 = −0.99478 𝑤𝑖𝑡ℎ 𝑅2 = 0.99

Looking at the above relationship, one can conclude

that 𝑏 = 𝑛 and the relationship can be rewritten as

𝐶(𝐼) ≅
𝑛

𝑘0.99478.

This relationship has a far superior 𝑅2 of 0.99 when compared to the manually modelled

relationship.

14

4.2 K Constant

 With a relationship established for 𝐶(𝐼) 𝑎𝑛𝑑 𝑘, I intend to establish a relationship for

𝐶(𝐼) 𝑎𝑛𝑑 𝑛 by keeping 𝑘 constant and varying 𝑛. For this investigation, the bit size for Pearson

hash function is 𝑏 = 10 => 𝑘 = 1024

As shown above, each slot has 26 possible inputs. Therefore the total number of inputs is

𝑛 = 26𝑙

Input Word 𝑙 𝑛 = 26𝑙 𝑏 𝑘 = 2𝑏 Collisions- 𝐶(𝐼)

BAT 3 17576 10 1024 40

MATH 4 456976 10 1024 1491

MATHS 5 11881376 10 1024 34745

CHANCE 6 308915776 10 1024 1960937

As shown above in the previous test, manually modelling the above data would result in poor

correlation which is not a statistically significant relationship. Hence, I used a computer

programmer to plot a regression line through the data and calculate the relationship.

Plotting the above table where 𝑛 is the x-axis and 𝐶(𝐼) is the y-axis.

15

Figure 5: Plotted Relationship between C(I) and the Number of Unique Inputs

Using regression, a relationship between 𝑛 𝑎𝑛𝑑 𝐶(𝐼) can be established:

𝐶(𝐼) ≅
𝑛𝑎

𝑏
, 𝑤ℎ𝑒𝑟𝑒 𝑎 = 1.0957 𝑎𝑛𝑑 𝑏 = 1024 𝑤𝑖𝑡ℎ 𝑅2 = 0.9999

Similar to the relationship between 𝑘 𝑎𝑛𝑑 𝐶(𝐼) looking at the above relationship, one could

conclude 𝑏 = 𝑘. Therefore, the relationship can be rewritten as 𝐶(𝐼) ≅
𝑛1.0957

𝑘

4.3 Collisions for given Input

Both the derived relationships for 𝑘, 𝐶(𝐼) 𝑎𝑛𝑑 𝑛. 𝐶(𝐼) are rather similar in nature and

considering they are only approximations with limited data values, it is possible to derive an

approximate value for 𝐶(𝐼) using both relationships

𝐶(𝐼) ≅
𝑛1.0957

𝑘
 and 𝐶(𝐼) ≅

𝑛

𝑘0.99478

As the position of 𝑛 𝑎𝑛𝑑 𝑘 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝐶(𝐼) is the same in both relationships is clear that

𝐶(𝐼) ∝
𝑛

𝑘
. Apart from this both numbers in the respective powers of 𝑛 𝑎𝑛𝑑 𝑘 are relativity close

16

to 1 and can be approximated as 1. Therefore, 𝐶(𝐼) a function for the number of Collisions for

any given input 𝐼 is approximately the following:

𝐶(𝐼) ≅
𝑛

𝑘

This above relationship can also be proven theoretically, given that there are 𝑛 inputs and 𝑘 hash

locations/outputs. Let 𝑋𝑖 be a random variable that checks if an input hashed to location 1 in trial

𝑖, so 𝑋𝑖 value can be either 0 𝑜𝑟 1. The probability of that any one item hashes to location 1 is

1
𝑘⁄ as in hash functions, the probability of hashing to any locations is equally likely. Therefore,

the expected value of 𝑋𝑖 = 1
𝑘⁄ . Now let 𝑋 be random variable 𝑋1 + 𝑋2 + 𝑋3 + ⋯ + 𝑋𝑛.

𝐸(𝑋) = 𝐸(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛)

𝐸(𝑥 + 𝑦) = 𝐸(𝑥) + 𝐸(𝑦) for any given random variables 𝑥, 𝑦6

Using the above formula and solving for 𝐸(𝑋)

𝐸(𝑋) = 𝐸(𝑋1) + 𝐸(𝑋2) + ⋯ 𝐸(𝑋𝑛)

=> 𝐸(𝑋) =
1

𝑘
+

1

𝑘
+ ⋯ +

1

𝑘
=

𝑛

𝑘

Hence expected value of 𝑋 = 𝑛
𝑘⁄ as 𝑋 is the sum of 𝑛 terms of value 1 𝑘⁄ . As this same expected

value applies to any locations the above approximation is proven.

In fact, the above-shown approximation is, in fact, one of many theorems about hash functions,

the theorem states: In hashing 𝑛 items into a hash table of size 𝑘, the expected number of items

that hash to any one location is 𝑛 𝑘⁄ .7

6 "Random Variable Combinations". Stattrek.Com, 2019, https://stattrek.com/random-

variable/combination.aspx.
7 PROBABILITY CALCULATIONS IN HASHING. Darthmouth, 2019, pp. 245-247,

https://math.dartmouth.edu/archive/m19w03/public_html/Section6-5.pdf. Accessed 4 Mar 2019.

17

4.4 Expected Number of Collisions

With the value for Collisions 𝐶(𝐼) for any given input 𝐼, now we can find 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠)

which is the expected number of collisions. 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) will be the total number of inputs 𝑛

minus the number of occupied locations as each occupied location will contain one input that

would not have collided in the process of hashing.

𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) = 𝑛 − 𝐸(𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠)

𝐸(𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠) is total number of locations or total number of unique outputs 𝑘 minus

the 𝐸(𝑒𝑚𝑝𝑡𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠). Hence, the equation for 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) can be written as

𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) = 𝑛 − 𝑘 + 𝐸(𝑒𝑚𝑝𝑡𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠)

Using the similar logic used to find the number of collisions or any given input, we can find the

expected number of empty locations. The probability that any position 𝑖 will be empty after 1

item is hashed is 1 −
1

𝑘
 . Considering the trial process independent with two outcomes, input

hashes to slot 𝑖 or it doesn’t, it is clear the probability of no input hashing to slot 𝑖 from n inputs

is (1 −
1

𝑘
)𝑛.

Let 𝑋𝑖 be a random variable equal to 1 if location 𝑖 is empty and 0 if it is not. The expect number

of empty locations will be equal to 𝑋1 + 𝑋2 + 𝑋3 + ⋯ + 𝑋𝑘, thus an equation for the expected

number of empty locations can be written in terms of 𝑛, 𝑘

𝐸(𝐸𝑚𝑝𝑡𝑦 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠) = 𝑘(1 −
1

𝑘
)𝑛

Substituting the above equation in the equation for 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠), we get

𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) = 𝑛 − 𝑘 + 𝑘(1 −
1

𝑘
)𝑛

Similar to the equation derived for Collisions for a given input both the above equations are in

fact theorems about hashing, which we were able to derive using data.

18

The theorems states:

1. In hashing n items into a hash table with k locations, the expected number of empty

locations is 𝑘(1 −
1

𝑘
)𝑛.8

2. In hashing n items into a hash table with k locations, the expected number of collisions is

𝑛 − 𝑘 + 𝑘(1 −
1

𝑘
)𝑛.8

The above equation can also be converted to use bit size 𝑏 instead of 𝑘 by substituting 𝑘 = 2𝑏

𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) = 𝑛 − 2𝑏 + 2𝑏 (1 −
1

2𝑏
)

𝑛

, 𝑤ℎ𝑒𝑟𝑒 𝑛. 𝑏 ∈ 𝑍+

4.5 E(Collisions) For Common Hashing Algorithms

First, I will calculate using the above formula the expected number of collisions for the

Pearson Hashing algorithm which has been used in this investigation, after this I will be

calculating the expected number of collisions for other popular hashing algorithms.

The initial Pearson hashing algorithm we used for calculating the hash of the word

“MATH” had a bit size of 8 and we used only four upper case characters, for this case the

expected number of collisions:

𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) = 456976 − 28 + 28 (1 −
1

28
)

456976

=> 456720

 The expected number of collisions is so high as the 𝑛 ≫ 2𝑏

8 PROBABILITY CALCULATIONS IN HASHING. Darthmouth, 2019, pp. 245-247,

https://math.dartmouth.edu/archive/m19w03/public_html/Section6-5.pdf. Accessed 4 Mar 2019.

19

In the real-world hashing algorithms with so many collisions would practically be useless, but

most modern hashing algorithms have enormous bit sizes and do not collide unless 𝑛 is very

large. For practical applications ,𝑛 cannot be restricted to only four upper case characters, for

showcasing expected number of collisions of modern hashing algorithms I will be using the

entire English alphabet, both upper and lower case, which is 52 characters. Additionally, all 10

digits will be included and two symbols for good measure, this brings the number of characters

to 64. The number of slots used will be 10 which would result in a total input size of

6410 = 1.15292 × 1018

Hashing Algorithm 𝑏(𝐵𝑖𝑡 𝑆𝑖𝑧𝑒) 𝑛(𝐼𝑛𝑝𝑢𝑡 𝑆𝑖𝑧𝑒) 𝑘 = 2𝑏 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠)

Pearson 8 1.152 × 1018 256 1.153 × 1018

MD-5 128 1.152 × 1018 3.403 × 1038 0

SHA-1 160 1.152 × 1018 1.462 × 1048 0

SHA-2 224 1.152 × 1018 2.696 × 1067 0

SHA-2 256 1.152 × 1018 1.158 × 1077 0

SHA-2 384 1.152 × 1018 3.940 × 10115 0

SHA-2 512 1.152 × 1018 1.340 × 10154 0

None of the modern hashing algorithms collides 𝑛 = 1.15292 × 1018 as 𝑛 ≪ 𝑘. Such large bit

sizes enable modern hashing algorithms to minimize collisions.

Out of all the above show algorithms, MD5 has the small bit size after Pearson with a bit size of

𝑏 = 128, below shown is the graph of a discontinuous function which showcases the first value

of 𝑛 for which MD5 collides.

20

For 𝑛 > 1.89 × 1022, the

function of 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) > 0

4.6 Optimizing E(Collisions) for N and K

The function for 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) would be more useful to help create secure hashing

algorithms if it could be optimized, finding a 𝑛, 𝑘 values for a minimum 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠)

𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) = 𝑛 − 2𝑏 + 2𝑏 (1 −
1

2𝑏
)

𝑛

, 𝑤ℎ𝑒𝑟𝑒 𝑛. 𝑏 ∈ 𝑍+

While the function 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) is a discrete function and the properties of differentiation are

not supposed to be used to find a minimum, there are times that this method does work to solve

for a minimum. Hence, I am assuming the function 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) to be a continuous function to

attempt to find a minimum using partial derivatives. The function 𝐸(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠) is rewritten

with 𝑥, 𝑦 instead of 𝑛, 𝑘 𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑛 𝑎𝑛𝑑 𝑦 = 𝑘.

𝐹(𝑥, 𝑦): 𝑥 − 2𝑦 + 2𝑦 (1 −
1

2𝑦
)

𝑥

, 𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦 ∈ ℝ

Figure 6 : Relationship between E(Collisions) and Number of Unique

Inputs

21

As the above function is a multivariable function in terms of 𝑛, 𝑘, to optimize the function I will

have to use partial derivates and multivariable calculus. This was another great learning

opportunity for me, I was able to learn a new part of calculus about which I knew little to nothing

before.

The first condition for a minimum at point 𝐴(𝑥0, 𝑦0) for the function 𝐹(𝑥, 𝑦) is that

∇𝐹(𝑥0, 𝑦0) = 09

Another notation for ∇𝐹(𝑥0, 𝑦0) is below

[
𝐹𝑥

′(𝑥0, 𝑦0)

𝐹𝑦
′(𝑥0, 𝑦0)

] = [
0
0

] = 𝟎

First, I will evaluate the derivate of the function with respect to 𝑥 which is
𝜕

𝜕𝑥
𝐹(𝑥, 𝑦)

While evaluating
𝜕

𝜕𝑥
𝐹(𝑥, 𝑦) the variable 𝑦 can be considered a constant, hence the function can

be re-written as

𝜕

𝜕𝑥
(2𝑦 (1 −

1

2𝑦
)

𝑥

− 2𝑦 + 𝑥) → 𝑎𝑥 − 𝑏 + 𝑥

𝑤ℎ𝑒𝑟𝑒 𝑎 = (1 −
1

2𝑦
) 𝑎𝑛𝑑 𝑏 = 2𝑦

𝜕

𝜕𝑥
(𝑏 × 𝑎𝑥 − 𝑏 + 𝑥) = 𝑏 × 𝑎𝑥𝑙𝑛(𝑎) + 1

Substituting 𝑎, 𝑏 back in the above equation

𝜕

𝜕𝑥
(2𝑦 (1 −

1

2𝑦
)

𝑥

− 2𝑦 + 𝑥) = 2𝑦 (1 −
1

2𝑦
)

𝑥

ln (2𝑦 (1 −
1

2𝑦
)) + 1

9 "Introduction To Partial Derivatives". Khan Academy, 2019,

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/partial-derivative-and-
gradient-articles/a/introduction-to-partial-derivatives.

22

Similarly, differentiation the function with respect to 𝑦, the below equation can be written with 𝑥

as a constant

𝜕

𝜕𝑦
(2𝑦 (1 −

1

2𝑦
)

𝑥

− 2𝑦 + 𝑥) →
𝜕

𝜕𝑦
(2𝑦 (1 −

1

2𝑦
)

𝑎

− 2𝑦 + 𝑎) , 𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑥

Applying the Sum/Difference Rule: (𝑓 ± 𝑔)′ = 𝑓′ + 𝑔′

𝜕

𝜕𝑦
(𝑎) = 0

𝜕

𝜕𝑦
(2𝑦) = ln (2) × 2𝑦

𝜕

𝜕𝑦
((2𝑦(1 −

1

2𝑦
)𝑎)

Apply the product rule on the previous derivative: (𝑓 × 𝑔)′ = 𝑓′ × 𝑔 + 𝑔′ × 𝑓

𝑓 = 2𝑦 , 𝑔 = (1 −
1

2𝑦
)𝑎

→
𝜕

𝜕𝑦
(2𝑦) (1 −

1

2𝑦
)

𝑎

+
𝜕

𝜕𝑦
(1 −

1

2𝑦
)

𝑎

(2𝑦)

𝜕

𝜕𝑦
(2𝑦) = ln (2) × 2𝑦

𝜕

𝜕𝑦
(1 −

1

2𝑦
)

𝑎

= 𝑎(1 −
1

2𝑦
)𝑎−1 × ln (2) ×

1

2𝑦
× 2𝑦

→ (1 −
1

2𝑦
)

𝑎

× ln(2) × 2𝑦 + (2𝑦) × (𝑎 (1 −
1

2𝑦
)

𝑎−1

× ln(2))

→ (1 −
1

2𝑦
)

𝑎

× ln(2) × 2𝑦 + (2𝑦) × (𝑎 (1 −
1

2𝑦
)

𝑎−1

× ln(2)) − ln(2) × 2𝑦 + 0

Simplifying the above equation and substituting 𝑎 = 𝑥 back in

→ ln (2)(𝑥 (1 −
1

2𝑦
)

𝑥−1

+ 2𝑦((1 −
1

2𝑦
)

𝑥

− 1)

23

Therefore ∇𝐹(𝑥, 𝑦) = [
𝐹𝑥

′(𝑥, 𝑦)

𝐹𝑦
′(𝑥, 𝑦)

] = [
2𝑦 (1 −

1

2𝑦)
𝑥

ln (2𝑦 (1 −
1

2𝑦)) + 1

ln (2)(𝑥 (1 −
1

2𝑦)
𝑥−1

+ 2𝑦((1 −
1

2𝑦)
𝑥

− 1)

]

To proceed with optimising the function, I should be able to find a solution for the above

set of simultaneous equations, however, after extensive attempts to manually solve the above

equation and further attempts to use software like wolfram alpha or even custom written

program, I was unable to find a solution for above equations.

Within the scope and limitation of my investigation I found it impossible to find a

solution for the above system of equations and hence cannot proceed in optimising the function.

The techniques I attempted couldn’t solve the system of equations and techniques that could

possibly solve this system of equation are far beyond the scope of both the high school and even

undergraduate mathematics.

For the above-stated reasons, I will assume that the system of equations has no solution

and hence the function has no minima and cannot be optimised.

24

5. Conclusions

The goal of the investigations was to explore the mathematics behind hash functions and

to determine a function for the expected number of collisions for any given hash functions.

The investigation was able to achieve both of these goals, first by exploring how simple

hash functions uses mathematics to convert a given input of any length to a fix length output

which was demonstrated using the Pearson Hash Function.

Furthermore, the investigation was able to derive theorems valid for any given hash

function by a custom program to run collision tests on the Pearson Hash Function.

Finally, the investigation was able to derive a function for the expected number of

collisions,𝐸(𝐶) dependent on the size of input and bits size of hash functions.

𝐸(𝐶) = 𝑛 − 2𝑏 + 2𝑏 (1 −
1

2𝑏
)

𝑛

, 𝑤ℎ𝑒𝑟𝑒 𝑛. 𝑏 ∈ 𝑍+

The investigation was even able to explore the applications of this function with real world

hashing algorithms like MD5 and SHA. While the investigation was limited by its scope and was

unable to optimise the function, finding an exact minimum the investigation found that

𝐸(𝐶) → 0 𝑎𝑠 𝑛 ≪ 𝑘

For me, this investigation gave me an opportunity to learn a lot of new skills and develop my

existing skills in both mathematics and computer science, I had a chance to learn multivariable

calculus which is something I might not have discovered otherwise, furthermore having a

practical application of my knowledge in python to assist this investigation helped me become

more comfortable with the language and with using programming to solve mathematical

problems. This investigation gave me new insights in the field of encryption and hashing

algorithms which is a field that has fascinated me for the past few years, it gave me a deeper and

25

more mathematical understanding of a concept which I once thought was primarily a computer

science concept.

The two primarily limitations of this investigation were Time and Computational Power, with

limited time to both conduct and write this investigation, I was unable to achieve somethings

which might have been possible given longer time. Similarly, the data collected by the custom

program was limited in the scope of hashing algorithms and bit sizes it could test due to a

limitation in computational power and the time the program could run for. This limited the data

to only one hashing algorithm and one smaller bit sizes. Of course, the investigation is inevitable

limited by some human error on my part and my ability and knowledge in mathematics.

 To carry this investigation forward I would like to collect data on collisions for more hashing

algorithms with a larger variance in bit size, I would also like to derive a function for Probability

of Collision for any given input for any given hash function.

26

6.References

1. "Bits And Bytes". Web.Stanford.Edu, 2019, https://web.stanford.edu/class/cs101/bits-

bytes.html.

2. "Introduction To Partial Derivatives". Khan Academy, 2019,

https://www.khanacademy.org/math/multivariable-calculus/multivariable-

derivatives/partial-derivative-and-gradient-articles/a/introduction-to-partial-derivatives.

3. "Qlikview Hash Functions And Collisions - The Qlik Fix!". The Qlik Fix!, 2019,

http://www.qlikfix.com/2014/03/11/hash-functions-collisions/.

4. "Random Variable Combinations". Stattrek.Com, 2019, https://stattrek.com/random-

variable/combination.aspx.

5. "What Is Modular Arithmetic?". Khan Academy, 2019,

https://www.khanacademy.org/computing/computer-

science/cryptography/modarithmetic/a/what-is-modular-arithmetic.

6. "1.5 - The Coefficient Of Determination, R-Squared | STAT

501". Newonlinecourses.Science.Psu.Edu, 2019,

https://newonlinecourses.science.psu.edu/stat501/node/255/.

7. PROBABILITY CALCULATIONS IN HASHING. Darthmouth, 2019, pp. 245-247,

https://math.dartmouth.edu/archive/m19w03/public_html/Section6-5.pdf. Accessed 4

Mar 2019.

8. "ASCII Table". Cs.Cmu.Edu, 2019, https://www.cs.cmu.edu/~pattis/15-

1XX/common/handouts/ascii.html.

https://newonlinecourses.science.psu.edu/stat501/node/255/

27

9. Tarak, Rahul. "Cryogenicplanet/Mathia". Github, 2019,

https://github.com/CryogenicPlanet/mathIA.

7. Appendix

All the programs write for this investigation can be found below and at the repository

https://github.com/CryogenicPlanet/mathIA with all the lookup tables also

K Constant Test Code

import pickle
ten = []
with open ('ten.txt', 'rb') as fp:
 ten = pickle.load(fp)
correctHash = 186
trueCases = 0
def hash8(message, table,mod):
 global trueCases
 hashed = len(message) % mod
 #print("Intial:")
 #print(hashed)
 for i in message:
 #print("Ord:")
 #print(ord(i))
 #print("postion :")
 #print((hashed+ord(i))%256)
 #print("In loop hashed:")
 hashed = table[(hashed+ord(i)) % mod]
 if hashed == correctHash:
 trueCases = trueCases +1
 #print(hashed)
 return hashed
from itertools import product
from string import ascii_uppercase
#userInput = input("Enter 4 Letter Word : ")
keySet = []
for i in range(3,6):
 keywords = [''.join(i) for i in product(ascii_uppercase,
repeat = i)]
 keySet.append(keywords)

https://github.com/CryogenicPlanet/mathIA

28

#print(len(keywords))
testWords = ["BAT","MATH","MATHS","CHANCE"]
number = 0
for i in range(4):
 print("Word : ")
 word = testWords[i]
 print(word)
 correctHash = hash8(word,ten,len(ten))
 if i != 3:
 keywords = keySet[i]
 trueCases = 0
 for word in keywords:
 output = hash8(word,ten,1024)
 else :
 with open("outputfile.txt") as infile:
 for line in infile:
 trueCases = 0
 line.split("\n")
 output = hash8(line,ten,1024)

 #byte = bytes(word,encoding='utf-8')
 #temp = hashlib.sha256(byte).hexdigest()
 #if temp == correctHashSha:
 #trueForSha = trueForSha + 1
 #print(trueCases)
 #print(len(keywords))
 #print(trueForSha)
 print(trueCases)
 print(" ------- ")

N Constant Code

import pickle
thirteen = []
with open ('thirteen.txt', 'rb') as fp:
 thirteen= pickle.load(fp)
fourteen =[]
with open ('fourteen.txt', 'rb') as fp:
 fourteen= pickle.load(fp)
fifthteen = []
with open ('fifthteen.txt', 'rb') as fp:

29

 fifthteen= pickle.load(fp)
twevle = []
with open ('twevle.txt', 'rb') as fp:
 twevle= pickle.load(fp)
eleven = []
with open ('eleven.txt', 'rb') as fp:
 eleven= pickle.load(fp)
ten = []
with open ('ten.txt', 'rb') as fp:
 ten = pickle.load(fp)
nine = [12, 438, 80, 6, 401, 403, 458, 78, 408, 127, 100, 138, 183, 182, 348,
61, 308, 230, 103, 159, 500, 414, 128, 55, 339, 445, 451, 441, 452, 425, 480,
333, 469, 291, 434, 156, 487, 86, 397, 144, 5, 363, 502, 508, 269, 303, 9,
19, 71, 58, 137, 420, 51, 320, 486, 482, 353, 505, 92, 398, 26, 326, 476,
135, 345, 352, 391, 313, 49, 171, 373, 481, 489, 57, 467, 1, 77, 443, 292,
180, 140, 245, 223, 427, 433, 293, 54, 325, 321, 3, 283, 217, 328, 56, 185,
279, 455, 202, 220, 113, 278, 132, 461, 196, 114, 106, 41, 209, 79, 385, 446,
134, 59, 497, 179, 270, 16, 453, 285, 232, 426, 60, 372, 44, 139, 336, 15,
43, 164, 493, 120, 307, 437, 161, 383, 470, 4, 305, 238, 411, 241, 47, 52, 2,
216, 369, 316, 395, 173, 151, 150, 471, 299, 286, 311, 46, 253, 175, 110,
211, 82, 302, 181, 459, 210, 346, 130, 394, 341, 473, 8, 96, 143, 7, 510,
509, 197, 25, 412, 334, 474, 50, 317, 155, 239, 91, 39, 439, 323, 374, 10,
33, 131, 236, 335, 506, 281, 200, 424, 384, 165, 264, 263, 312, 199, 295,
468, 98, 122, 243, 499, 405, 492, 306, 503, 337, 409, 258, 501, 342, 99, 62,
73, 24, 17, 366, 193, 157, 252, 400, 227, 329, 375, 152, 483, 436, 386, 108,
13, 475, 142, 115, 125, 111, 121, 166, 224, 169, 255, 332, 126, 465, 63, 407,
231, 294, 276, 380, 389, 53, 207, 359, 287, 149, 261, 498, 90, 349, 29, 116,
421, 107, 371, 67, 64, 192, 404, 347, 212, 318, 38, 485, 68, 472, 249, 396,
399, 233, 229, 42, 177, 491, 496, 240, 248, 274, 288, 356, 72, 189, 415, 145,
419, 430, 153, 74, 235, 406, 284, 504, 257, 97, 431, 271, 119, 160, 260, 324,
208, 327, 40, 266, 31, 136, 477, 65, 234, 32, 117, 388, 310, 101, 435, 190,
322, 95, 174, 123, 195, 194, 423, 221, 351, 112, 330, 14, 66, 511, 273, 85,
94, 104, 361, 392, 488, 387, 146, 83, 275, 393, 418, 410, 254, 226, 133, 69,
89, 314, 23, 11, 358, 228, 129, 319, 494, 268, 417, 205, 454, 118, 162, 201,
355, 449, 36, 298, 167, 331, 338, 390, 242, 203, 413, 381, 93, 444, 218, 204,
365, 370, 460, 262, 168, 18, 315, 344, 402, 186, 237, 378, 163, 21, 301, 362,
272, 70, 429, 191, 87, 20, 484, 364, 296, 81, 368, 265, 456, 422, 416, 22,
340, 267, 495, 463, 105, 300, 154, 250, 219, 350, 462, 246, 148, 290, 76,
277, 466, 343, 507, 176, 34, 289, 30, 376, 448, 0, 147, 172, 428, 382, 247,
442, 280, 141, 84, 222, 282, 184, 188, 187, 377, 297, 27, 479, 124, 198, 457,
490, 37, 178, 440, 109, 309, 379, 102, 88, 225, 367, 447, 432, 48, 259, 158,
206, 28, 213, 244, 478, 35, 357, 256, 45, 75, 251, 304, 464, 354, 214, 170,
450, 215, 360]
eight = [233, 91, 39, 71, 32, 190, 13, 76, 141, 63, 0, 102, 80, 48, 74, 53,
130, 176, 27, 64, 177, 248, 152, 35, 214, 103, 108, 41, 72, 75, 220, 106,
251, 228, 69, 238, 224, 147, 1, 104, 82, 87, 169, 116, 66, 109, 61, 17, 195,
36, 14, 119, 110, 154, 189, 185, 23, 253, 243, 196, 85, 140, 15, 47, 137,
227, 20, 242, 175, 49, 247, 170, 167, 217, 200, 156, 123, 180, 210, 50, 107,
70, 131, 12, 58, 28, 78, 192, 136, 19, 226, 30, 193, 255, 221, 62, 183, 184,

30

187, 45, 90, 86, 117, 37, 54, 240, 142, 46, 222, 38, 250, 229, 44, 4, 205,
239, 115, 93, 55, 145, 225, 218, 153, 213, 244, 120, 219, 114, 201, 2, 60,
172, 168, 194, 232, 98, 43, 113, 111, 6, 124, 77, 73, 138, 95, 128, 181, 216,
59, 84, 235, 245, 252, 81, 92, 133, 125, 3, 231, 16, 144, 161, 22, 208, 139,
212, 94, 121, 99, 198, 199, 65, 151, 135, 204, 236, 215, 223, 197, 118, 52,
171, 122, 105, 163, 101, 207, 148, 25, 88, 182, 202, 188, 191, 186, 173, 246,
51, 7, 126, 155, 96, 5, 146, 68, 33, 241, 249, 56, 234, 57, 112, 230, 10, 29,
159, 178, 129, 150, 26, 40, 134, 160, 67, 209, 100, 211, 143, 157, 83, 11,
79, 89, 254, 18, 206, 237, 42, 97, 165, 158, 21, 149, 132, 162, 174, 24, 31,
203, 166, 179, 164, 9, 34, 127, 8]
seven = [48, 29, 17, 123, 45, 49, 7, 53, 120, 25, 20, 92, 51, 77, 16, 43, 97,
107, 65, 82, 67, 22, 79, 116, 68, 113, 32, 66, 124, 69, 84, 102, 37, 4, 31,
54, 34, 85, 44, 122, 52, 72, 111, 110, 63, 83, 28, 39, 59, 23, 40, 75, 70,
11, 6, 60, 61, 71, 38, 91, 73, 27, 1, 125, 10, 12, 21, 19, 0, 78, 112, 104,
118, 13, 18, 98, 88, 100, 76, 56, 117, 108, 101, 33, 2, 115, 109, 81, 57,
127, 5, 35, 46, 80, 106, 96, 58, 62, 47, 86, 114, 99, 30, 94, 42, 93, 15, 74,
126, 55, 24, 36, 87, 119, 121, 14, 90, 103, 89, 95, 9, 8, 3, 50, 41, 105, 64,
26]
tables = [eight,nine,ten,eleven,twevle,thirteen,fourteen,fifthteen]
correctHash = 186
trueCases = 0
def hash8(message, table,mod):
 global trueCases
 hashed = len(message) % mod
 #print("Intial:")
 #print(hashed)
 for i in message:
 #print("Ord:")
 #print(ord(i))
 #print("postion :")
 #print((hashed+ord(i))%256)
 #print("In loop hashed:")
 hashed = table[(hashed+ord(i)) % mod]
 #print(hashed)
 return hashed
from itertools import product
from string import ascii_uppercase
#userInput = input("Enter 4 Letter Word : ")

keywords = [''.join(i) for i in product(ascii_uppercase, repeat = 4)]
#print(len(keywords))
for table in tables:
 print("Size : ")
 print(len(table))
 correctHash = hash8("MATH",table,len(table))
 print("Value of Math: ")
 print(correctHash)
 print("Collisions :")
 trueCases = 0

31

 for word in keywords:
 output = hash8(word,table,len(table))
 if output == correctHash:
 trueCases = trueCases +1
 #byte = bytes(word,encoding='utf-8')
 #temp = hashlib.sha256(byte).hexdigest()
 #if temp == correctHashSha:
 #trueForSha = trueForSha + 1
 #print(trueCases)
 #print(len(keywords))
 #print(trueForSha)
 print(trueCases)
 print(" ------- ")

Creating Lookup Tables

from random import shuffle
import hashlib
from statistics import mean
import pickle
from itertools import product
from string import ascii_uppercase

#example_table = list(range(0,32768))
#shuffle(example_table)
#print(example_table)
#print(len(example_table))
#keywords = [''.join(i) for i in product(ascii_uppercase, repeat = 6)]
with open('outputfile.txt', 'w') as outfile:
 for combo in product(ascii_uppercase, repeat=6):
 outfile.write(''.join(combo) + '\n')
#keywords = []
#for item in product(ascii_uppercase, repeat=6):
 #keywords.append(item)
#with open('outfile.txt', 'wb') as fp:
 #pickle.dump(keywords, fp)

Pearson Hash Function

def hash8(message, table,mod):
 #global trueCases
 hashed = len(message) % mod
 #print("Intial:")
 #print(hashed)

32

 for i in message:
 #print("Ord:")
 #print(ord(i))
 #print("postion :")
 #print((hashed+ord(i))%256)
 #print("In loop hashed:")
 hashed = table[(hashed+ord(i)) % mod]
 #print(hashed)
 return hashed

	1. Introduction
	2. Background Information
	2.1 Hash Functions
	2.2 Hash Collision
	2.3 Other background Knowledge
	2.3.1 Modulus Operator
	2.3.2 Bits

	3.Generating Hashes
	3.1 Choosing Appropriate Hash Function
	3.2 Implementing Pearson Hashing
	3.3 Converting “MATH” to a hash value

	4. Finding Hash Collisions
	4.1 N Constant
	4.2 K Constant
	4.3 Collisions for given Input
	4.4 Expected Number of Collisions
	4.5 E(Collisions) For Common Hashing Algorithms
	4.6 Optimizing E(Collisions) for N and K

	5. Conclusions
	6.References
	7. Appendix

